
libJoTS: JSON That Syncs!?

Amos Brocco1, Patrick Ceppi1, and Lorenzo Sinigaglia2

1 Department of Innovative Technologies, SUPSI, Manno, Switzerland
{amos.brocco,patrick.ceppi}@supsi.ch

2 Banana.ch SA, Lugano, Switzerland
lorenzo@banana.ch

Abstract. In this paper, we present libJoTS, a C/C++ library that
provides asynchronous offline replication of arbitrary JSON data with
a minimal footprint. The primary use case for this library is to easily
replicate changes made to a JSON file by different users. The replica-
tion process is based on multi-version concurrency control (MVCC) to
ensure non-destructive conflict management, but in contrast to other
popular databases, libJoTS has no runtime dependencies, supports hi-
erarchical documents with nested objects, and stores all synchronizable
data into a file. The library is self-contained, and provides a simple API
for C/C++ programs as well as bindings for other languages, such as
Java and Python. As such it can be easily linked into any application,
allowing end-users to replicate changes to data asynchronously and of-
fline. By using files, data sharing between users does not depend on any
specific technology, and can be achieved either with an online file-sharing
service or offline, thus ensuring full control on data privacy.

Keywords: JSON · MVCC · Data Synchronization

1 Introduction

Nowadays, many popular applications that once ran natively (offline) on per-
sonal computers are being pushed to the cloud. At user level, one of the most
significant improvements brought by cloud applications is the ability to easily
share data with other people and to work online in a collaborative fashion. In this
regard, replication protocols [1–3] are the cornerstone of those multi-user applica-
tions, allowing updates made to each replica to be consistently merged together.
Replication can be either synchronous or asynchronous. With synchronous repli-
cation, often simply referred to as synchronization, there is a continuous flow
of information that propagates changes to all replicas: as soon as new data is

? This work has been financially supported by the Swiss Innovation Agency, Project
nr. 26367.1 PFES-ES.
Copyright © 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). This volume is published
and copyrighted by its editors. SEBD 2020, June 21-24, 2020, Villasimius, Italy.



being created or updated, data is (atomically) replicated to all remote copies.
With asynchronous replication, changes are not propagated in realtime, and
the system might even tolerate temporary divergence between replicas. While
the synchronous approach ensures that each replica always contains the same
data, the overall performance and availability is affected by network availability,
reliability and speed. Concerning cloud applications, developers are currently
advised to develop software that is able to work even when there is no connec-
tivity: in this context asynchronous replication mechanisms play an important
role in allowing users to work on local data, while enabling synchronization with
a remote server when online. Beside technical aspects, sharing data on the cloud
and storing potentially sensitive data on someone else’s computer, introduce pri-
vacy, security and legal concerns [4, 5]. In this regard, the user should be able
to retain as much control as possible on his/her information, either by relying
on offline applications and local file storage, or by using connected applications
that offer an open or generic synchronization layer that does not depend on any
vendor-specific cloud API. The first approach allows for selective disclosure of
information (the user decides whom to send his/her information to), but typi-
cally makes synchronization between different versions of the same data difficult.
The library presented in this paper, called libJoTS, tackles this issue by imple-
menting an offline asynchronous replication mechanism for arbitrary JSON data.
libJoTS allows any native application to store data in a synchronizable format;
moreover because data is always stored as a file on disk, remote sharing can also
be performed using any means, like e-mail or file-hosting platforms. Finally, syn-
chronizable files can be easily encrypted (using either symmetric or asymmetric
algorithms) and/or digitally signed to prove that data was not altered.

2 Related Work

Data replication and synchronization technologies are the cornerstone of dis-
tributed storage systems and cloud-based content editing applications (for ex-
ample Google Docs™). Although there exist different algorithms and protocols
to keep data synchronized [8], we restrict our focus to asynchronous replica-
tion, which represents the closest concept to the proposed solution. With asyn-
chronous replication, updates on the master (or source) storage are not copied
immediately to a secondary storage (or target), but can be delayed to a later
time. Such an approach gives up on strict consistency and update timeliness
across the network, while supporting the development of offline first solutions,
which can operate even without a permanent connection between clients and
servers on the network. In this regard, a well-known technology is CouchDB [3], a
document-oriented NoSQL database which supports multi-master asynchronous
replication: each instance can be independently updated, and changes can be
replicated between any instance. Unfortunately, CouchDB is not suited for de-
ployment on mobile devices or the web, therefore similar databases that share

https://developer.chrome.com/apps/offline apps



the same replication protocol have been developed (for example, Couchbase Lite
or PouchDB). With those solutions it is possible to build applications that can
operate on a local database while offline and asynchronously replicate changes
to another peer when a network connection becomes available. With libJoTS
we aim to provide transparent offline data replication, by generating a synchro-
nizable file which can be stored and exchanged through any communication
channel. Such a synchronizable file might also be signed and/or encrypted, al-
lowing for accountability and/or confidentiality of the data being exchanged. In
contrast to a diff/patch [10] solution (which also work on files), libJoTS is tai-
lored for semi-structured data in JSON format and ensures that the structure
is maintained in the merged document. Data is versioned and each revision is
stored directly into the file, allowing for historical data retrieval. Like CouchDB,
conflict management is based on MultiVersion Concurrency Control (MVCC):
accordingly, replication can be performed among different synchronizable files in
no specific order, without compromising the structure of the underlying data.
Although there exist comparison tools expressly conceived for JSON data (see
for example, RFC6902), those solutions do not maintain an historical record
of all versions of the data and might still require user intervention to ensure
consistency in the event of concurrent conflicting modifications. In contrast to
some of the previously cited solutions, libJoTS does not require the source data
to be decomposed into a collection of documents, and the library can be easily
integrated into desktop or mobile application, being self-contained and written
in C++ (with a C API and bindings for other languages, currently Java and
Python, and the possibility of targeting WebAssembly in the future).

3 Use Cases

With libJoTS we aim at supporting the development of distributed applications
that rely on synchronized data without the need for a dedicated server or a
specific cloud platform, by enabling information sharing regardless of the type of
communication channel (for example, shared folder, e-mail or portable storage).
Each user is in control of the data and can decide when to share its own version
or merge changes from other users. In the following two use cases are presented.

3.1 Offline first application

We consider a desktop or mobile application that lets users edit documents offline
on their device and later share their work with other people. User A produces
the first version of document X; this version is sent to users B and C through
a cloud-based file sharing service. Both user A, B and C make their changes to
the document. Subsequently, user B sends its own updated version to User A by
email, who can then merge the changes made by B in its copy. At the same time

https://www.couchbase.com
https://pouchdb.com
https://tools.ietf.org/html/rfc6902



user C sends its own version to B by email. User B integrates the changes made
by C, merges incoming updates from A and then forwards its final version of the
document to C (Figure 1). Users can perform arbitrary editing and replication,
and the process can be scaled to an even larger group of users. Moreover, each
user can store copies of synchronizable files for archival or backup purposes:
those file can be later processed by the library in order to restore data in the
application’s own format or to peform synchronization.

Fig. 1. Offline first sample workflow with multi-master replication.

3.2 Distributed configuration management

A common problem in distributed systems is configuration management. Con-
figuration updates need to be replicated from a central server to a multitude of
nodes. By means of synchronizable JSON files, libJoTS can be used to create
mergeable configuration updates: because conflict handling is non-destructive,
local changes are preserved while updates to global settings can be seamlessly
integrated. Configuration updates can also be stored on disk to be merged later,
and the authenticity of an update can be verified by means digital signatures.

4 libJoTS Data Model

The data model used by libJoTS is based on JSON documents. Similar to
CouchDB the basic unit of replication is a JSON object: the replication algo-
rithm compares two collections of JSON objects and determines the ones missing
on each collection. Whereas, CouchDB and other document-oriented databases
(like PouchDB) require the application to organize its data into separate JSON
objects, libJoTS accepts either a collection of separate objects or an arbitrary
JSON document (with a nested hierarchy of objects), and can seamlessly repli-
cate their changes. Therefore, from an application’s point of view, if JSON is
already employed as a data interchange format, little to no change is required
to make use of the synchronization capabilities of the library. The proposed ap-
proach for dealing with hierarchical JSON documents is to automatically trans-
form an arbitrary input (for example, Listing 1.1) into a collection of objects
which can be synchronized independently.



{"data ":{" transactions ":[
{"_id ":"391...32c","currency ":" CHF","value ":22412 ," from ":"13465 -45566" ,
"to ":"34655 -67554"}]} ," info ":{" txcount ":1}}

Listing 1.1. Sample application JSON (unflattened, version V1)

The output of such a data transformation (Listing 1.2) is a flattened collec-
tion where array of objects from the input document have been replaced by a
string reference, and their contents have been promoted to first-level objects.
Optionally, nested objects can be promoted too.

[{" _id ":"391...32c","currency ":"! CHF","from ":"!13465 -45566" ," to
":"!34655 -67554" ," value ":22412} ,{" _id ":" @123 ...8b1-u","s":["391473a1-bb89
-4dbf -af93 -7 a8cc1ebc32c "]} ,{"_id":" root","data ":{" transactions ":" @123 ...8
b1"},"info ":{" txcount ":1}}]

Listing 1.2. Flattened collection of JSON documents corresponding to Listing 1.1.
Hash values (SHA-256) have been ellipsized for clarity.

We call this procedure flattening : each promoted object is associated with a
unique identifier, which can be either created using rules specified by the user
or automatically generated by the library using a hash algorithm such as SHA-
256 [7], xxHash or BLAKE2. The flattening transformation is non-destructive
and can be undone to restore the original unflattened hierarchical structure. To
recover the order of the elements inside flattened arrays, we generate ordering
documents with a list of identifiers which belong to the corresponding array in the
unflattened JSON document. Listing 1.2 illustrates an ordering document (ref-
erenced by the @123...8b1-u identifier). To prevent the synchronization process
from changing the relative order of the elements (as chosen by different users),
ordering documents can be tied to specific user/instance identifiers: hence each
user can synchronize data without losing their ordering. Moreover, strings are
escaped using the ’ !’ character to differentiate them from references to arrays or
promoted objects.

{"d":{
"391...32c":[" d29 ...d0b"],
"@123 ...8b1-u":["3 fc... e82"],
"root ":[" cc6 ...5d6"]},

"o": {
"3fc...e82 ":{"s":["391...32c"]},
"cc6 ...5d6":{" data ":{" transactions ":" @123 ...8b1"},"info ":{" txcount ":1}},
"d29...d0b ":{" currency ":"! CHF","from ":"!13465 -45566" ," to ":"!34655 -67554" ,

"value ":22412}} ,
"r":" root"}

Listing 1.3. Synchronizable JSON document corresponding to Listing 1.1.

4.1 Synchronizable JSON

A Synchronizable JSON file contains a flattened collection of JSON objects
along with versioning information. Similar to MultiVersion Concurrency Control
(MVCC), concurrent updates and replication never overwrite existing data, but

https://cyan4973.github.io/xxHash
https://blake2.net



simply create a new revision for the concerned objects. The revision string is
computed by hashing the contents of the object. All revisions but the first one
have an ancestor : for each object, we maintain the history of revisions (also
known as the revision tree), which is stored inside the Synchronizable JSON ).
By consulting the revision tree it is possible to determine the order of each
update and thus the most recent revision (known as the winning revision), which
coincides with the tip of the longest branch of the tree. The Synchronizable JSON
data corresponding to Listing 1.1 is shown in Listing 1.3. The value associated
with the key d (for documents) is a dictionary of all objects’ identifiers and the
corresponding revision trees, whereas the value corresponding to o (for objects)
is a dictionary with the contents of each revisions. Finally, the r key points to
the identifier of the root element (which is needed to reconstruct the original
JSON document).

The replication algorithm implemented in libJoTS merges all changes found
in a source document into a target document. Given two collections of versioned
documents C1 and C2, the replication of C1 to C2 will copy all the documents
and revisions of C1 that are missing in C2. At the same time, the revision tree
for each document will be updated accordingly. If more than one revision shares
the same ancestor a conflict will arise: in that case, a deterministic algorithm
will choose the winning revision based on the longest revision branch and lexico-
graphical comparison. This algorithm achieves replica convergence and eventual
consistency using MVCC, as in [6].

{"data ":{" transactions ":[
{"_id ":"391...32c","currency ":" EUR","value ":22412 ," from ":"13465 -45566" ,
"to ":"34655 -67554"}]} ," info ":{" txcount ":1}}

Listing 1.4. Updated JSON document (version 2a)

{"data ":{" transactions ":[
{"_id ":"391...32c","currency ":" USD","value ":22412 ," from ":"13465 -45566" ,
"to ":"34655 -67554"}]} ," info ":{" txcount ":1}}

Listing 1.5. Updated JSON document (version 2b)

As an example of the whole replication process, consider the two updated
documents in Listings 1.4 and 1.5. Both have been produced starting from version
1: in version 2a, the value associated with key currency has been changed from
CHF to EUR, in version 2b the value has been changed to USD.

The corresponding synchronizable documents can be merged together to pro-
duce a new version (Listing 1.6). Both the data contained in version 2a and in ver-
sion 2b are present in the resulting document, and the revision tree for 391...32c
contains a reference to both revisions. The deterministic conflict resolution al-
gorithm will choose either one of the revisions as winner (in this example, the
result corresponds to Listing 1.5).

{"d":{
"391...32c":[" d29 ...d0b " ,["151...4 cf_d295e90 ","8be...7 cb_d295e90 "]],
"@123 ...8b1-u":["3 fc... e82"],
"root ":[" cc6 ...5d6"]},

"o":{
"151...4 cf":{" currency ":"! EUR","from ":"!13465 -45566" ," to ":"!34655 -67554" ,

"value ":22412} ,



"3fc...e82 ":{"s":["391...32c"]},
"8be...7cb":{" currency ":"! USD","from ":"!13465 -45566" ," to ":"!34655 -67554" ,"

value ":22412} ,
"cc6 ...5d6":{" data ":{" transactions ":" @123 ...8b1"},

"info ":{" txcount ":1}},
"d295 ...d0b ":{" currency ":"! CHF","from ":"!13465 -45566" ," to ":"!34655 -67554" ,

"value ":22412}} ,
"r":" root"}

Listing 1.6. Merged Synchronizable JSON document (2a,2b)

Because each revision is kept inside the Synchronizable JSON file, the more
the data is updated, the bigger the size of the file becomes. This problem can
be mitigated by enabling the built-in compression of the Synchronizable JSON
file. To further limit this growth, we make use of pruning to delete the value
associated with old revisions. More specifically, the pruning operation removes
stale (i.e. non-winning) branches in each revision tree and deletes unreferenced
revision objects. The client application can select the depth of the pruning op-
eration in order to maintain an historical record of previous data values (for
example, to provide an undo functionality).

5 API

To support the basic operations related to Synchronizable JSON files, the public
API provides four core functions :

– sync json update updates or creates a Synchronizable JSON document
from an arbitrary JSON object (in the application’s own format). Since
the library is stateless, the Synchronizable JSON object must be stored (i.e.
saved to a file) by the application itself.

– sync json read reads a Synchronizable JSON document and converts it
back into an application-compatible JSON document.

– sync json replicate replicates changes from a source Synchronizable JSON
document to a target one.

– sync json prune removes historical information (i.e. old revisions) from a
Synchronizable JSON document.

5.1 Offline Workflows

To better understand how the library is meant to be used by an application,
in the following we present the expected workflow covering both the creation of
Synchronizable JSON documents and offline replication of changes.

Updating a Synchronizable JSON file To generate the first version of a Syn-
chronizable JSON document, the application needs to provide the input JSON
file to the sync json update. The output document contains all synchronization
information required for subsequent replications and can be shared with other

Additional functions for manipulating Synchronizable JSON are also available.



users. In order to update a Synchronizable JSON it is necessary to provide a Syn-
chronizable JSON to the sync json update function, along with the updated
JSON data. In a distributed scenario several Synchronizable JSON documents
can be updated in parallel, independently from each other, without loosing the
ability to later replicate their changes. In this regard, each document represents
a different branch in the version tree.

Reading a Synchronizable JSON file Synchronizable JSON can be con-
verted back to the application’s own format using the sync json read function.
By means of additional procedures provided by the library, specific revisions of
the data can also be obtained.

Replicating a Synchronizable JSON file Using the sync json replicate

function it is possible to replicate changes made to a source Syncronizable JSON
file into a target file: we refer to this process as offline replication. Because each
element of the document is versioned, the replication process does not lose any
data (non-destructive conflict management). The user can also query for the
differences between the new and the old version, as well as conflicting data.

5.2 Online Replication Workflows

Provided that both the source and the target peers are online at the same time
(or are able to directly communicate), it is possible to optimize the replication
process by sending only bits of modified data. Although not directly implemented
by the library, two approaches are proposed: a diff/patch mechanism, and an
interactive replication protocol.

JSON Patch approach The JSON Patch solution requires a RFC6902 com-
pliant diff and patch tool to produce a sequence of operations to apply to a
target JSON file (at version VM) in order to update its structure to be equal to
a source version VN. As mentioned previously, patching the application’s JSON
does not provide a robust solution to the replication problem, since data might
be inadvertently overwritten or corrupted due to conflicting modifications; there-
fore we consider generating patches against Synchronizable JSON files in order
to maintain the full revision history. The target peer needs to communicate its
version VM of the data to the source peer. The source peer then employs a JSON
diff function to produce a patch needed to update VM to VN. Unfortunately,
such an approach makes synchronization difficult (if not impossible) in a multi-
master scenario, where multiple versions of a document with different replication
histories arise from concurrent offline synchronizations made by different users:
in this situation patches might not apply cleanly leading to data corruption.

Such as https://github.com/nlohmann/json



Interactive replication protocol If both the source and the target peers are
online, a more efficient replication can be implemented through an interactive
protocol.The source peer sends an offer message to the target, containing a list
of document identifiers and their associated winning revision. The target replies
with an array of identifiers of documents that are either unknown or whose latest
revision is older than the one proposed by the source. Finally, the source provides
a Synchronizable JSON document with just the missing information. Compared
to the JSON Patch solution, an interactive replication protocol generates more
traffic but does not require the source peer to keep all previous versions of a
document. Moreover, it can replicate changes between different branches (i.e.
Synchronizable JSON documents that have a different revision history). The
library also provides methods to migrate data to and from CouchDB-compatible
servers, hence replication through another database is also possible.

6 Benchmarks

We evaluate the performance of our library by considering a stepwise editing
workflow of a JSON document. The evaluation process begins with version V1

of a simple JSON document containing an array of objects (Listing 1.1). We
subsequently create a new version by performing some changes to the data.
More specifically, version VN is modified to produce version VN+1 as follows: a
new object is added to the transaction array, and the contents of an existing
object (except the id field) are replaced with new data. Moreover the value
of the field txcount is updated to reflect the size (number of elements) of the
transaction array. At each step, version VN of the Synchronizable JSON and
version VN+1 of the application JSON are processed by the sync json update

function to produce version VN+1 of the Synchronizable JSON. The resulting
document is pruned to remove all but the latest revision of the internal data. The
last version of the Synchronizable JSON is subsequently replicated on the second-
last version using sync json replicate, and the replication result is converted
back to the application’s own format using sync json read. The execution of
all operations is profiled in order to measure the required time, the maximum
amount of main memory used during the process (maximum RSS), and the
resulting file size (for both the Synchronizable JSON and the application JSON).
The library was configured to use the SHA-256 hashing algorithm for generating
revision hashes and compression was disabled (unless otherwise specified). All
tests were repeated 10 times on a 64-bit Ubuntu Linux machine with an Intel©
Core™ i7-6500U CPU running at 2.50GHz with 16GB or memory. The library
was compiled with gcc version 9.2.1: the actual size of the library is less than
900 KB, with dependencies only against the standard library and the pthreads
library. For comparison, a minimal install of CouchDB 2.3.1 takes about 40 MB,
whereas version 7.1.1 of PouchDB (without JS runtime) is 123 KB.

Results also show the file size using the xxHash algorithm for comparison purposes.



6.1 Offline replication results

As shown in Figure 2, the time required to process JSON data using the library
grows linearly with respect to the size of the file. In this regard, we note that
the size of the final version of the file (containing a total of 1000 sub-objects) is
about 133 KB, and that the total includes also the time spent loading the file
from disk. As expected, reading Synchronizable JSON back into the application’s
own format is the least expensive operation, whereas updating or replicating data
takes almost the same time. The growth in each graph is marked by a series of
steps due to the allocation of memory for the internal structures of the library.

Additional testing allowed us to assess the scalability of the replication al-
gorithm with respect to the input file size: on the same hardware, generating a
Synchronizable JSON document from a 65.5 MB file with 335,389 sub-objects
requires about 18 seconds (with the flattening process taking about 80% of the
time), and produces a 110 MB output file. Merging two Synchronizable JSON
files of such a size (where one file contains 479 updated objects with respect
to the other) takes about 12 seconds, while converting the result back to the
application’s unflattened format requires about 10 seconds. With large files the
total cost is clearly dominated by parsing the input JSON, which is a known
problem when dealing with this format [9]. Trying to import the same amount
of data into PouchDB (using the bulk docs interface) freezes the program.

Fig. 2. Time required vs number of ob-
jects.

Fig. 3. Maximum Resident Set Size (RSS)
vs number of objects.

Concerning memory allocation, Figure 3 illustrates the memory required for
updating, reading and replicating data using the library. In each case the growth
follows the increase in the size of the input document. Replication requires the
largest amount of memory, since data from both input files need to be stored at
the same time; as expected, reading takes the least memory amount. Unfortu-
nately JSON parsing is memory intensive, and very high requirements are to be
expected when dealing with large files: with the previously mentionend 110 MB
Synchronizable JSON files, replication requires almost 3 GB of memory.



Figure 4 takes into consideration the cost for offline synchronization, by com-
paring the file size of both the original JSON file (application JSON) and Syn-
chronizable JSON. The graph also shows the difference between two hashing
algorithms (SHA-256 and xxHash) which can be used to generate object and re-
vision identifiers. Even though pruning was used to limit the amount of historical
information kept with the file, Synchronizable JSON clearly takes more space
on disk compared to application JSON, because of the additional information
required to support offline replication (namely, revision trees). It is interesting
to note that xxHash allows for more compact synchronizable files compared to
SHA-256, because it generates 64 bit hashes instead of 256 bit ones. If Synchro-
nizable JSON files are not meant to be processed outside the library, built-in
compression (based on the deflate [11] algorithm) can be enabled to further re-
duce the size of the file by about 40%. With respect to the workflow involving
other databases with support for replication, the size of Synchronizable JSON is
typically smaller: the on-disk space taken by PouchDB for the same information
(stored as a structured log) is 1.3 Megabytes.

6.2 Online replication results

In order to asses the benefit of online replication (either using the diff/patch
approach or the interactive replication protocol) we repeated the experiment
discussed in the previous section assuming that new versions are generated on
a source peer while measuring the amount of data that needs to be sent to a
target peer in order to keep both replicas synchronized.

Fig. 4. File size vs number of objects.
Fig. 5. Amount of exchanged data vs
replication approach.

As shown in Figure 5, exchanging the full synchronizable JSON file consumes
more bandwith than online protocols; the traffic generated using the RFC6902
approach is also significantly lower than the interactive protocol, because only
a small amount of information needs to be sent to the target. However, such an
approach would not work in a multi-master scenario, where multiple branches



need to be synchronized. Although not shown in the graph, the resulting traffic
is not meaningfully affected by the hashing algorithm, with xxHash producing
the same amount of data as SHA-256.

7 Conclusions

In this paper, we presented libJoTS, a C/C++ library that provides asyn-
chronous offline replication of arbitrary JSON data. The primary use case is
to easily replicate changes asynchronously and independently made to a JSON
document by different users. The replication process is based on multi-version
concurrency control (MVCC) to ensure non-destructive conflict management.
The proposed approach draws inspiration from popular document databases
with built-in support for replication, but provides a standalone lightweight solu-
tion targeting offline replication of small to moderately sized JSON documents.
Synchronizable JSON files can be stored on disk, digitally signed and exchanged
with any type of communication technology in order to be later merged on a re-
mote system. The API focuses on an offline-first approach, allowing for exchang-
ing synchronizable files using any technology, but also enables online replication
using a simple protocol. The library, which we plan to release in the forthcoming
months, is self-contained and can be easily integrated into any desktop or mobile
application. Future work will focus on implementing an on-disk storage back-end
to reduce memory usage (at the expense of processing time), and abstractions
to ease integration with cloud based file sharing platforms.

References

1. Souri, Alireza and Pashazadeh, Saeid and Habibizad Navin, Ahmad. Consistency of
Data Replication Protocols in Database Systems: A Review. International Journal
on Information Theory (IJIT). 3. 2014.

2. Vidal Martins, Esther Pacitti, Patrick Valduriez. Survey of data replication in P2P
systems. RR-6083, INRIA. 2006.

3. Apache Software Foundation, CouchDB Replication Protocol, version 3, retrieved
February 27. 2020.

4. Sen, Jaydip. Security and Privacy Issues in Cloud Computing. 2013.
5. Paul Voigt and Axel von dem Bussche. The EU General Data Protection Regula-

tion (Gdpr): A Practical Guide (1st ed.). Springer Publishing Company, Incorpo-
rated. 2017.

6. CouchDB Team, CouchDB 2.0 Reference Manual, Samurai Media Limited. 2015.
7. Handschuh, Helena. SHA-0, SHA-1, SHA-2 (Secure Hash Algorithm).. In Encyclo-

pedia of Cryptography and Security (2nd Ed.) , edited by Henk C. A. van Tilborg
and Sushil Jajodia , Springer, 2011.

8. Ezéchiel, Katembo and Kant, Shri and Agarwal, Ruchi.. Analysis of database repli-
cation protocols. 2018.

9. Langdale, Geoff and Lemire, Daniel. Parsing Gigabytes of JSON per Second. 2019.
10. MacKenzie, D., Eggert, P., and Stallman, R.. Comparing and Merging Files with

GNU diff and patch. Network Theory Ltd, 2002.
11. P. Deutsch. RFC1951: DEFLATE Compressed Data Format Specification version

1.3. RFC Editor, USA. 1996.


